

Certificate of Analysis

Page: 1 of 2

Sample: 03-13-2025-60614

Report Created: 03/21/2025; Expires: 03/21/2026

Sample Received:03/13/2025;

Slap Happy Beverage Company

2405 Hwy K Hermann, MO 65041 jgrady@slaphappybeverage.com 314-440-6290

Dolor Special Edition

Ingestible, Tincture

ter Testeet: 03/13/2025 Analyce LOQ LOQ Mass Mass Cristianolof 0.750 3.000 3263.875 3.2264 A-Humulene 0.750 3.000 6707.241 6.707 A-Prinene 0.750 3.000 rLOQ rLOQ A-Crophyllene 0.750 3.000 rLOQ rLOQ A-Crophyllene 0.750 3.000 rLOQ rLOQ Carrolene 0.750 3.000 rLOQ rLinalool 0.750 3.000 rLOQ Commene 0.750 3.000 rLOQ Commene 0.750 3.000 rLOQ Total 47224.893 47.225 4.722 % Pine Pine Aterpenes value is gualitative and includes concentrations outside the assay quantitative analytical range.	sting Method:HS-GC/MS, C	ON-P-4000)					Lavender
PPM PPM PPM mg/g a-Bisabolol 0.750 3.000 3283.875 3.264 a-Humulene 0.750 3.000 618.750 0.619 a-Finene 0.750 3.000 4.02 Colored a-Finene 0.750 3.000 ALS 750 0.619 B-Caryophyllene 0.750 3.000 ND ND ND B-Caryophyllene 0.750 3.000 ND ND ND B-Myrcene 0.750 3.000 ND ND ND Carrene 0.750 3.000 YD ND ND Carrene 0.750 3.000 ND ND ND Citral 0.750 3.000 ND ND ND Dihydrocarveol 0.750 3.000 ND ND ND Vereprinene 0.750 3.000 ND ND ND Nerolidol 0.750 3.000 ND ND	te Tested: 03/13/2025						Lavender
a-Bisabolol a-Humele a-Pinene 0.750 3.000 3263.875 3.264 a-Pinene 0.750 3.000 618.750 a-Pinene 0.750 3.000 6070241 6.707 B-Caryophyllene 0.750 3.000 ND ND B-Caryophyllene 0.750 3.000 7159241 7.159 Borrieol Carpene 0.750 3.000 ND ND Borrieol Carpene 0.750 3.000 702509 0.703 Carpophyllene Oxide Carpon Cirral 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND ND ND ND ND ND ND ND ND ND	Analyte	LOD	LOQ	Mass	Mass		
a-Bisabolol a-Humele a-Pinene 0.750 3.000 3263.875 3.264 a-Pinene 0.750 3.000 618.750 a-Pinene 0.750 3.000 6070241 6.707 B-Caryophyllene 0.750 3.000 ND ND B-Caryophyllene 0.750 3.000 7159241 7.159 Borrieol Carpene 0.750 3.000 ND ND Borrieol Carpene 0.750 3.000 702509 0.703 Carpophyllene Oxide Carpon Cirral 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND ND ND ND ND ND ND ND ND ND		PPM		PPM	mg/g	 -	
a-Humulene a-Pinene a-Pinene A-Terpinene 0.750 3.000 6707.241 6.797 J.8-Cincole 0.750 3.000 ND ND B-Caryophyllene 0.750 3.000 715.988 8.975 Borneol Carene 0.750 3.000 ND ND Dihydrocarveol Citral 0.750 3.000 ND ND Dihydrocarveol Citral 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND ND ND ND ND ND ND ND ND ND	a-Bisabolol						125
a-Pinene 0.750 3.000 6707.241 6.707 a-Terpinene 0.750 3.000 - <loq -="" <loq<br="">B-Caryophyllene 0.750 3.000 ND ND B-Caryophyllene 0.750 3.000 7159.241 7.159 Borneol 0.750 3.000 ND ND Camphene 0.750 3.000 - <loq -="" <loq<br="">Caryophyllene Oxide 3.000 3.000 962.268 0.962 Citral 0.750 3.000 ND ND Caryophyllene 0.750 3.000 ND ND Fenchone 0.750 3.000 ND ND Limonene 0.750 3.000 ND ND Verolidol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pine</loq></loq>							П —
a-Terpinene 0.750 3.000 <loq< td=""> <loq< td=""> <loq< td=""> LOQ LOQ<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></loq<></loq<>							
1,8-Cincole 0.750 3.000 ND ND ND 8-Caryophyllene 0.750 3.000 7159.241 7.159 Borneol 0.750 3.000 ND ND ND Camphene 0.750 3.000 ND ND ND Carrene 0.750 3.000 YCLOQ -LOQ -LOQ Carrene 0.750 3.000 YCLOQ -LOQ -LIme Citral 0.750 3.000 ND ND ND Dihydrocarveol 0.750 3.000 ND ND ND Citral 0.750 3.000 ND ND ND Dihydrocarveol 0.750 3.000 ND ND ND Vietroinene 0.750 3.000 ND ND ND Linalool 0.750 3.000 ND ND ND Nerolidol 0.750 3.000 ND ND ND Ocimene 0.750 3.000 ND ND ND Piegone 0.750							Clove
B Caryophyllene 0.750 3.000 7159:241 7.159 B-Myrcene 0.750 3.000 8975.098 8.975 Borneol 0.750 3.000 ND ND Camphene 0.750 3.000 YCLOQ <loq< td=""> Carronphyllene Oxide 3.000 702:509 0.703 Concol Caryophyllene Oxide 3.000 ND ND ND Dihydrocarveol 0.750 3.000 ND ND Fenchone 0.750 3.000 ND ND y-Terpinene 0.750 3.000 ND ND Limonene 0.750 3.000 ND ND Limalool 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Ocimene 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pinene Limore Vise Vise Limore<td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
B-Myrcene 0.750 3.000 8975.098 8.975 Borneol 0.750 3.000 ND ND Camphene 0.750 3.000 YLOQ <loq< td=""> Carene 0.750 3.000 702.509 0.703 Carrone 0.750 3.000 YOZ 0.703 Citral 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Citral 0.750 3.000 ND ND Pinenene 0.750 3.000 ND ND Limonene 0.750 3.000 ND ND Limolol 0.750 3.000 ND ND V=Terpinene 0.750 3.000 ND ND Limalool 0.750 3.000 ND ND Ocimene 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 %</loq<>							
Borneol 0.750 3.000 ND ND Camphene 0.750 3.000 <loq< td=""> <loq< td=""> <loq< td=""> Carene 0.750 3.000 702.509 0.703 Image: Conserved of the conserved of</loq<></loq<></loq<>	B-Myrcene	0.750					
Camphene 0.750 3.000 <loq< td=""> <loq< td=""> <loq< td=""> Carene 0.750 3.000 702.509 0.703 <!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></loq<></loq<>							
Carene 0.750 3.000 702:509 0.703 Caryophyllene Oxide 3.000 3.000 962.268 0.962 Citral 0.750 3.000 ND ND Dihydrocarveol 0.750 3.000 ND ND Fenchone 0.750 3.000 ND ND y-Terpinene 0.750 3.000 ND ND Limalool 0.750 3.000 ND ND Menthol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Ocimene 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pine Image: Caryophyle colspan="4">Image: Caryophyle colspan="4">Cinnamon Image: Caryophyle colspan="4">Image: Caryophyle colspan="4">Ocime colspan="4">Caryophyle colspan="4">Cinnamon Image: Caryophyle colspan="4">Image: Caryophyle colspan="4">Cinnamon Image: Caryophyle colspan="4">Image: Caryophyle colspan="4">ND Image: Caryophyle colspan="4">Image: Caryophy							
Caryophyllene Oxide 3.000 3.000 962.268 0.962 Image: Caryophyllene Oxide Image: Caryophyllene Oxide ND							
Citral 0.750 3.000 ND ND ND Dihydrocarveol 0.750 3.000 ND ND ND Fenchone 0.750 3.000 ND ND ND Vereprinene 0.750 3.000 ND ND ND Limonene 0.750 3.000 7629.161 7.629 Image: Common State S		3.000					
Dihydrocarveol 0.750 3.000 ND ND Fenchone 0.750 3.000 ND ND y-Terpinene 0.750 3.000 ND ND Linalool 0.750 3.000 ND ND Menthol 0.750 3.000 ND ND Nerolidol 0.750 3.000 ND ND Ocimene 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 %		0.750		ND	ND ND		Lime
Fenchone 0.750 3.000 ND ND ND y-Terpinene 0.750 3.000 ND ND ND Limonene 0.750 3.000 7629.161 7.629 ILOO Menthol 0.750 3.000 ND ND ND Nerolidol 0.750 3.000 ND ND ND Ocimene 0.750 3.000 ND ND ND Pulegone 0.750 3.000 ND ND ND Total 47224.893 47.225 4.722 % Pine	Dihydrocarveol	0.750			ND		
Limonene Linalool Menthol Nerolidol O.750 3.000 ND ND ND Nerolidol O.750 3.000 ND ND ND Ocimene Pulegone 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Total Total	Fenchone	0.750					
Linalool 0.750 3.000 11206.750 11.207 Menthol 0.750 3.000 ND ND Ocimene 0.750 3.000 ND ND Pulegone 0.750 3.000 ND ND Terpinolene 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pine Pine							
Menthol 0.750 3.000 ND ND ND Nerolidol 0.750 3.000 ND ND ND Pulegone 0.750 3.000 ND ND ND Terpinolene 0.750 3.000 ND ND ND Total 47224.893 47.225 4.722 % Image: Constraint of the second sec	Limonene	0.750	3.000	7629.161	7.629		
Nerolidol Ocimene Pulegone 0.750 3.000 ND ND ND Terpinolene 0.750 3.000 ND ND ND Total	Linalool		3.000	11206.750	11.207		
Ocimene Pulegone 0.750 3.000 ND ND ND Terpinolene 0.750 3.000 ND ND ND Total 47224.893 47.225 4.722 % Image: Constraint of the second of the seco							
Pulegone 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pine							Cinnamon
Terpinolene 0.750 3.000 ND ND Total 47224.893 47.225 4.722 % Pine Image: Colspan="2">Image: Colspan="2" Image: Colspan="" Image: Colspan="2" Im							ຄຸ
Total 47224.893 47.225 4.722 % Pine Image: Contract of the second secon							
Pine Pine	Terpinolene	0.750	3.000	ND	ND		
	Total			47224.893	47.225	4.722 %	
			_				
							Pine
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.							
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.							
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.			ACCREDENT OF MAN				
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.							
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.			ALL				
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.			Califyor at Uning Califyor at Uning Sources				
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.			3km1/1 tl. ee-				
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.							
al terpenes value is qualitative and includes concentrations outside the assay quantitative analytical range.							
	al terpenes value is qualitative	and includes cond	entrations o	utside the assay q	uant <mark>ita</mark> tive a	nalytical range.	

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashley N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

All analyses were conducted at 6121 Heritage Park Dr, Suite A500 Chattanooga, TN 37416. Results published on this certificate relate only to the items tested. Items are tested as received. New Bloom Labs makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of New Bloom Labs.

Certificate of Analysis

Slap Happy Beverage Company Sample: 03-13-2025-60614 2405 Hwy K Sample Received:03/13/2025; Hermann, MO 65041 Report Created: 03/21/2025; Expires: 03/21/2026 jgrady@slaphappybeverage.com 314-440-6290 **Dolor Special Edition** Ingestible, Tincture 0.186% 0.186% **Total THC** Δ-9 THC 258.274 mg/mL 248.282 mg/mL **Total Cannabinoids** Total CBD **Cannabinoids with Density** Complete (Testing Method: HPLC, CON-P-3000) Date Tested: 03/13/2025 Analyte LOD LOQ Mass Mass Mass mg/mL mg/mL mg/mL mg/g % Δ -8-Tetrahydrocannabinol (Δ -8 THC) 0.448 0.672 1.487 1.551 0.155 Δ -9-Tetrahydrocannabinol (Δ -9 THC) 0.448 0.672 1.784 1.860 0.186 Δ-9-Tetrahydrocannabinolic Acid (THCA-A) 0.448 0.672 ND ND ND Δ -9-Tetrahydrocannabiphorol (Δ -9 THCP) 0.448 0.672 ND ND ND Δ-9-Tetrahydrocannabivarin (Δ-9 THCV) 0.448 0.672 ND ND ND Δ-9-Tetrahydrocannabivarinic Acid (Δ-9 THCVA) 0.448 0.672 ND ND ND R-Δ-10-Tetrahydrocannabinol (R-Δ-10-THC) 0.448 0.672 ND ND ND S-Δ-10-Tetrahydrocannabinol (S-Δ-10-THC) 0.448 0.672 ND ND ND 9R-Hexahydrocannabinol (9R-HHC) ND 0.448 0.672 ND ND 9S-Hexahydrocannabinol (9S-HHC) 0.448 0.672 ND ND ND Cannabidivarin (CBDV) 0.672 0.448 1.147 1.196 0.120 Cannabidivarinic Acid (CBDVA) 0.448 0.672 ND ND ND Cannabidiol (CBD) 0.672 0.448 248.282 258.897 25.890 Cannabidiolic Acid (CBDA) 0.448 0.672 ND ND ND Cannabigerol (CBG) 0.448 0.672 ND ND ND Cannabigerolic Acid (CBGA) 0.448 0.672 ND ND ND Cannabinol (CBN) 0.448 0.672 2.545 2.654 0.265 Cannabinolic Acid (CBNA) 0.448 0.672 ND ND ND Cannabichromene (CBC) 3.029 0.316 0.448 0.672 3.159 Cannabichromenic Acid (CBCA) 0.448 0.672 ND ND ND 258 274 269 317 26 932 Total Total THC = THCa * 0.877 + Δ9-THC; Total CBD = CBDa * 0.877 + CBD; LOQ = Limit of Quantitation; ND = Not Detected. Sample Density: 0.959 g/mL; Total THC Measurement of Uncertainty: ± 0.040% Total CBD Measurement of Uncertainty: ± 2.000%

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

Page: 2 of 2

All analyses were conducted at 6121 Heritage Park Dr, Suite A500 Chattanooga, TN 37416. Results published on this certificate relate only to the items tested. Items are tested as received. New Bloom Labs makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of New Bloom Labs.